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Drug delivery systems featuring electrochemical actuation repre-
sent an emerging class of biomedical technology with program-
mable volume/flowrate capabilities for localized delivery. Recent
work establishes applications in neuroscience experiments involv-
ing small animals in the context of pharmacological response.
However, for programmable delivery, the available flowrate con-
trol and delivery time models fail to consider key variables of the
drug delivery system––microfluidic resistance and membrane stiff-
ness. Here we establish an analytical model that accounts for the
missing variables and provides a scalable understanding of each
variable influence in the physics of delivery process (i.e., maximum
flowrate, delivery time). This analytical model accounts for the key
parameters––initial environmental pressure, initial volume, micro-
fluidic resistance, flexible membrane, current, and temperature––
to control the delivery and bypasses numerical simulations allow-
ing faster system optimization for different in vivo experiments.
We show that the delivery process is controlled by three nondi-
mensional parameters, and the volume/flowrate results from the
proposed analytical model agree with the numerical results and
experiments. These results have relevance to the many emerging
applications of programmable delivery in clinical studies within
the neuroscience and broader biomedical communities.
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Drug delivery techniques for treatment, cure, diagnosis, and
prevention of illnesses have substantially evolved from sys-

temic absorption of pharmacological agents through tissue
membranes to localized drug release in regions of interest (1).
Modern drug delivery methods help researchers study the effects
of a medication intended for a specific body region while de-
creasing the potential side effects from unwanted interactions in
other body regions (2). In drug delivery, the effect of pharma-
cological ingredients, drug amount, target regions, delivery rates,
and dosage time, varies between delivery approaches (1, 3)
ranging from ubiquitous ingestible tablets/capsules to injectable
microsystems.
The growing opportunities in localized delivery and clinical

research motivated the development of microsystems for volume
and flowrate control (4–10) in pharmacological experiments in-
volving small animals (11–18). Design of implantable micro-
systems requires compact size, power consumption, and
biocompatible material considerations (19) that vary between
actuation methods (e.g., magnetic, thermal, optical, mechanical,
or electrochemical) to deliver the drug without complications
(9). A biocompatible encapsulation limits any negative effects
derived from implantation or during continuous operation while
in proximity with surrounding tissues/fluids. Excessive thermal
heating and high-power consumption can 1) affect animal be-
havior and damage the implanted region and 2) require bulk
electronics (i.e., battery) that increase the size and overall weight
of the microsystem.

In implantable delivery systems, electrochemical actuation
offers 1) low power consumption, 2) negligible heat generation,
3) reconfigurable volume sizes (e.g., small or large drug reser-
voirs), 4) higher flowrates and fast response time (9, 20), 5)
simplified implantation and unrestricted movement of animals
for in vivo studies, and in some cases 6) refillable (7, 15, 16, 21)
for repeated studies. Wireless electrochemical actuation features
an inductive link to harvest the electrical current applied to a set
of interdigitated electrodes in contact with an electrolyte solu-
tion and initiate the chemical reaction (22–26). Continuous gas
formation (i.e., hydrogen H2 and oxygen O2) gradually increases
the pressure inside the electrolyte reservoir to deform a flexible
polymer membrane (15, 16, 22, 27) pushing the drug via partially
implanted microchannels to the target region inside the animal.
Fig. 1 illustrates the schematics of an electrochemical pump.
Electrochemical actuation systems have been used to target lo-
calized delivery of insulin (28), cancer agents (29, 30), hormone
(31) and intraocular (21) drug delivery, as well as therapeutic
drug studies (4, 32).
In 2019, a wireless, battery-free, and refillable electrochemical

microsystem combined optogenetic and pharmacological stimu-
lation in a single experiment with programmable flowrates and
unrestricted animal movement (15, 16). These miniaturized in-
jectable devices overcome the limitations of supplementary
hardware required in combined stimulation and offer compatible
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form factors for large-scale manufacturing, making it a suitable
option for widespread use in animal behavioral studies (31, 33,
34) where accurate control of volume and flowrate are critical.
Programmed drug delivery influences the pharmacodynamic re-
sponse in the animals (31) and excessively high or low rates can
damage neighboring tissues or block the microfluidic channels
(15), respectively. To predict the fluid delivery rates, a linear
relationship between the effective current and flowrate has been
used in the past (35, 36). However, this model neglects the
microfluidic resistance and flexible membrane mechanics and
overestimates the flowrate (15). Recently, a numerical model,
derived from the rate form of the ideal gas law, was proposed
and it accounts for the 1) microfluidic cross-sectional area and
length, and 2) flexible membrane elasticity (16). Still, the model
requires extensive numerical simulations to predict volume and
flowrates, and it is difficult to find time-scaling relationships for
drug delivery.
Here, we develop an analytical model that gives an accurate

relation between the current and flowrate and offers a simple
analytical solution of the drug delivery process, while considering
all important factors in the microsystem design, including
microchannel and flexible membrane which are difficult to

account for in prior studies, without the need for numerical
simulations. The flexible membrane effects were derived from
mechanics theory for an arbitrary flexible polymer and used in
the volume and flowrate calculations. Motivated by the ongoing
adoption of implantable electrochemical microsystems in drug
delivery, the analytical model described in the following iden-
tifies the key parameters that control the volume and flowrate
during the drug delivery and gives researchers much larger de-
sign space (e.g., geometrical, flexural, and fluidic) for electro-
chemical microsystems in future clinical studies. This article
presents results from experiments and previous numerical
models to validate the proposed theory.

Results and Discussion
Modeling of Drug Delivery. Fig. 1 illustrates the drug delivery
process using electrochemical actuation where electrical current
i in the interdigitated electrodes initiates (Fig. 1A) a chemical
reaction that increases the pressure P inside the electrolyte res-
ervoir due to gas formation. The buildup pressure continuously
deforms the flat flexible polymer membrane (Fig. 1B) into a
spherical cap and pushes the drug out of the reservoir through a
network of microfluidic channels and into the target delivery
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Fig. 1. Schematic diagram of the electrochemical micropump system. (A) Before, (B) during, and (C) after the drug delivery process highlighting the relevant
volume, pressure, and microchannel parameters in the drug delivery process.
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region (Fig. 1C). For electrochemical actuation devices, the drug
delivery process can be derived from the ideal gas law
P(V + V0) = nRT by writing the rate form as

_P(V + V0) + P _V = _nRT, [1]

where P is the pressure, V0 and V are the initial gas volume and
volume change inside the electrolyte reservoir, respectively,
_n = 3i

4F is the gas generation rate related to the effective current
i, F is the Faraday constant, R is the ideal gas constant, and T is
the temperature. The force equilibrium gives

P = 12μL _V
ab3(1 − 0.63 b

a) + f (V ) + P0, [2]

where the first term 12μL _V
ab3(1−0.63 b

a) represents the microfluidic resis-
tance (37, 38) for a rectangular cross-section, a, b, and L are the
width, height, and length of the delivery channel (Fig. 1), respec-
tively, and μ is the viscosity of the drug (valid for b < a, for a
square cross-section it simplifies ∼32μL _V

a4 ); the second term f (V ) is
the pressure needed to deform the flexible membrane leading to
the volume change V inside the electrolyte reservoir, and this
pressure–volume relationship f (V ) of the flexible membrane
could be determined numerically by the finite-element analysis
(FEA) as in prior studies, but now completely analytical as dis-
cussed later in this paper; and the third term P0 is the initial
environmental pressure. Substituting the gas generation rate
and pressure into Eq. 1 yields a second-order ordinary-
differential equation (ODE) of the form

[32μL
a4

V
:: + f ′(V ) _V](V + V0) + [32μL

a4
_V + f (V ) + P0] _V = 3iRT

4F
,

[3]

that describes the drug delivery process with square cross-section
microfluidic channels. Eq. 3 was solved numerically (15, 16) with
the initial conditions V (t = 0) = 0, and _V (t = 0) = 0 to deter-
mine the delivered drug volume and flowrate versus time. The
numerical solution of Eq. 3, while very useful, fails to provide a
scalable understanding of each parameter in the drug delivery.
The following nondimensional variables and parameters are

introduced: normalizing pressure terms P, f (V ) and P0 by the
ratio Eh

R0
, where E, h, and R0 are the flexible membrane Young

modulus, thickness, and radius, respectively; normalizing the
volume terms by R3

0, i.e., V p
0 = V0

R3
0
and V p = V

R3
0
; rewriting the

function f (V ) by a normalized function Eh
R0
G(V

R3
0
), where G is a

nondimensional function; and introducing a nondimensional
time of the form tp = 3iRT

4FEhR2
0
t. All the relationships with the

nondimensional parameters are given in SI Appendix, Table S1.
Eq. 3 can then be rewritten nondimensionally as

[Mpd
2V p

dtp2
+G’(V p) dV

p

dtp
](V p + V p

0 )
+ [MpdV

p

dtp
+G(V p) + Pp

0] dV p

dtp
= 1, [4]

where the nondimensional parameter Mp = 24μL
a4

iRTR2
0

Fh2E2 represents
the microfluidic resistance and it combines the effects of micro-
fluid channel (a and L), drug (μ), flexible membrane (E, h, and
R0), current (i), and temperature (T); and V p

0 = V0
R3
0
, and Pp

0 = P0R0
Eh

represent the initial volume and initial environmental pressure,
respectively. These three nondimensional parameters control the

drug delivery process (SI Appendix, Supplementary Note 1). We
integrate Eq. 4 to yield the following first-order ODE for V p:

(V p + V p
0 )  [MpdV

p

dtp
+G(V p)] + V pPp

0 −   tp = 0, [5]

with the initial conditions V p(tp = 0) = 0.
For vanishingly small Mp, i.e., negligible microfluidic resis-

tance, the equation above is simplified to the following:

tp = (V p + V p
0 ) G(V p) + V pPp

0, [6]

which gives the normalized time in terms of the normalized drug
volume (and initial environmental pressure Pp

0 and initial volume
V p
0 ). It is useful to estimate the drug delivery time tdelivery for a

given drug volume V , and tdelivery is linear with respect to V p
0 and

Pp
0. Its inverse, i.e., the drug volume versus time, is denoted by

V p
SOL(tp), which is the solution of Eq. 5 at the limit Mp = 0, al-

though it does not satisfy the initial condition _V (t = 0) = 0.
For small but nonvanishing Mp (i.e., accounting for the

microfluidic resistance), Eq. 5 is solved by the singular pertur-
bation method (SI Appendix, Supplementary Note 2) as

V p = V p
SOL tp( ) − Mp

V p
0

64h2
3πR2

0
+ Pp

0
V p
0

( )2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 − e

− 64h2

3πR2
0
+Pp

0
Vp
0

( ) tp
Mp
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, [7]

where the first term on the right-hand side is the solution of Eq.
6, the second term decays exponentially with time, and together
they satisfy the initial condition _V (t = 0) = 0.
Fig. 2 A and B show the results in Eq. 5 (numerical solution)

and Eq. 7 [semianalytical model with function f (V ) still deter-
mined from FEA]* when Mp changes for the base line values
V p
0 = 0.79, Pp

0 = 0.06, and h
R0

= 1
8 obtained from the experiments.

For both volume V p and flowrate dV p

dtp , the numerical solution and
semianalytical model agree very well for values ofMp ∼ 10−4 and
∼ 10−3, though the results deviate at Mp ∼ 10−2 because Mp is no
longer small (assumption in Eq. 7). The volume V p decreases as
the microfluidic resistance Mp increases (Fig. 2A). It also de-
creases as the initial volume V p

0 increases (Fig. 2C) because, for
small V p

0 , the PV term quickly overwhelms the initial volume
term PV0 resulting in a faster volume increase with time. On the
contrary, for large V p

0 , the term PV0 dominates for a substantial
time, taking longer for the term PV to outperform it over time
slowing down the volume increase. Similarly, the volume V p

decreases as the initial environmental Pp
0 increases (Fig. 2D)

because, for small Pp
0, the change in pressure due to microfluidic

channel 32μL _V
a4 and flexible membrane deformation f (V ) quickly

overcomes the environmental pressure P0 for a faster volume
increase; for large P0 (e.g., drug delivery at different organ/tis-
sues), the pressure increments due to 32μL _V

a4 and f (V ) are insig-
nificant as compared to the initial environmental pressure
slowing down the drug volume delivery.
The nondimensional maximum flowrate dV p

dtp , which is the peak
value in Fig. 2B, is important in drug delivery. Fig. 2E reveals
that the maximum flowrate dV p

dtp remains relatively constant for
small microfluidic resistance Mp < 10-4 and monotonically de-
creases as Mp increases from 10−4 to 1, therefore providing a
parameter to control the maximum flowrate. In addition, the

*The analytic expression of fðVÞ for any polymer membrane is given later in the paper
and the corresponding solution is called the analytical model, to distinguish from the
semianalytical model in which fðVÞ is obtained from FEA.
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A

C

E

B

D

F

Fig. 2. Drug delivery models and scaling results. (A) Numerical and semianalytical model results for normalized drug volume delivery and (B) normalized
flowrate over normalized time for different M*. Normalized drug volume delivery for different (C) initial volume V*

0 and (D) initial environmental pressure
P*0 . (E) Maximum normalized flowrate and the upper bound as a function of M* in the numerical model. (F) Critical normalized time to deliver normalized
drug volume for different M*; the lower bound corresponds to M* = 0. In the semianalytical model, the term f(V) is obtained from FEA.
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upper-bound maximum (dimensional) flowrate is derived ana-
lytically as (SI Appendix, Supplementary Note 3)

_Vmax = 3iRT

4F[ 16Eh3V0
πR6

0(1−v2)  + P0], [8]

which is linearly proportional to the current i and temperature T
and decreases as the initial environmental pressure P0 or the
product Eh3V0

R6
0(1−v2) of initial volume and bending stiffness of the

flexible membrane increases, where v is the Poisson ratio of
the membrane. This upper-bound solution is independent of
the material constitutive model, accurate for small Mp, and over-
estimates as Mp increases. Fig. 2F shows the critical nondimen-
sional time tpdelivery required to deliver a nondimensional volume
V p
drug of drug as M

p increases. For Mp = 0, the solution simplifies
to Eq. 6, which becomes the lower bound (black line) as there is
no microfluidic resistance. As Mp increases, the time to deliver
the drug also increases, and its upper-bound estimate is given
analytically (SI Appendix, Supplementary Note 3) by

tpdelivery =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣V p + Mp

V p
0 (64h23πR2

0
+ Pp

0
V p
0
)2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + V p

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ R0

Eh
f
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣V p

+ Mp

V p
0 (64h23πR2

0
+ Pp

0
V p
0
)2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦R3

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + Pp
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣V p + Mp

V p
0 (64h23πR2

0
+ Pp

0
V p
0
)2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, . [9]

where the term f (V ) depends on the material’s constitutive
model. The semianalytical solution in Eq. 7 is clearly between
the lower- and upper-bound estimate (Fig. 2F) and the f (V ) in
Eq. 9 was determined from FEA using the Marlow hyperelastic
constitutive model based on the stress–strain relationship of the
flexible membrane in SI Appendix, Fig. S2.
In animal behavioral studies involving drug delivery, the pre-

cise control of flowrate is critical to avoid tissue damage in the
surrounding areas caused by high flowrates and this can be
achieved by adjusting the current in the experiment (15, 16).
Fig. 3A shows that the upper bound and the numerical results of
the maximum flowrate, which agree very well with the experi-
ments [Zhang et al. (15)] for small current (< 0.3 mA), and they
deviate at larger currents (> 0.3 mA) due to increasing bubble
formation near the electrodes reducing the contact area between
the electrodes and electrolyte solution. The top x axis of Fig. 3A
shows the equivalent Mp for the effective current values. In the
delivery presented in Fig. 3B (16) where i = 0.3 mA, the flowrate
rapidly increases and reaches the maximum flowrate ∼1.5 μL/min
within a few seconds. This is also confirmed by the numerical
results as well as the semianalytical model, which agree well with
the experiments [Zhang et al. (16)]. The upper-bound solution is
also shown in Fig. 3B, which overestimates the maximum flowrate
by ∼5%. The parameters used in the analytical and numerical
models for Fig. 3 are listed in SI Appendix, Table S2.
The delivery requirements can vary between slow or instant

stimulation depending on the type of biomedical experiment and
target locations inside the animal body. Programmable control
over the flowrate and total delivery time are critical in many
neuroscience experiments to avoid any damage to the sur-
rounding locations and ensure that the stimulation was com-
pleted within a required timeframe. Depending on the type of
stimulation, the system can be designed using the three nondi-
mensional parameters proposed in the analytical model for
programmable operation of flowrates/timescales range prior to
fabrication of the physical device. During the delivery, the non-
dimensional parameters serve as the programmable controls to

adjust flowrates and delivery timescale by adjusting parameters
like the effective current depending on the experimental re-
quirements (e.g., low flowrates preferred in the brain to avoid
damage, and high flowrates to quickly suppress/reverse side
effects).

Volume–Pressure Relationships. The semianalytical model pre-
sented in Eq. 7 requires FEA to determine the function f (V )
related to the stiffness of the flexible membrane. Fig. 4A shows
the deformed profile of the flexible membrane obtained by FEA.
The profile shows zero slope at the clamped edges under small
pressure, suggesting the bending-dominated deformation. For
large pressure, however, this zero slope becomes invisible, sug-
gesting the stretching-dominated deformation. The analytical
solutions of f (V ) are obtained in the following for different
constitutive models of polymers, including linear elastic, Mooney
Rivlin (39), and Marlow (40) hyperelastic models, where the last
one can fit any stress–strain curve of polymers (41):

1) Bending solution (i.e., bending-dominated deformation): Un-
der small pressure the deformation is linear elastic (and all
hyperelastic models degenerate to linear elasticity). The flex-
ible membrane can be modeled as a clamped, elastic thin
plate with bending stiffness Eh3

12ð1�v2Þ (42). The volume V of
the deformed membrane is linearly proportional to the pres-
sure P, and this P∼V relation (42) gives

f (V ) = 16Eh3

πR6
0(1 − v2)V . [10]

2) Linear elastic membrane solution (i.e., stretching-dominated
deformation): Under large pressure the deformation is
stretching-dominated, i.e., the bending deformation becomes
negligible. For a linear elastic polymer, the equibiaxial tensile
stiffness Eh

1�v replaces the bending stiffness Eh3
12ð1�v2Þ in the anal-

ysis, which yields the following nonlinear P∼V relation (due
to large deformation) SI Appendix, Supplementary Note 4:

f (V ) = 64Eh
3π3R10

0 (1 − v)V
3. [11]

Fig. 4B shows that, without any parameter fitting, the bending
and linear elastic membrane solutions in the two equations
above agree well with the FEA results at small and large defor-
mation, respectively.

3) Mooney Rivlin membrane solution (i.e., stretching-
dominated deformation): Under large pressure the Mooney
Rivlin hyperelastic model might be more suitable for a linear
elastic one. SI Appendix, Supplementary Note 4 gives the
following P∼V relation in the form of parametric equations

f (V ) = 4Eh
3R0

sin3 ϕ

ϕ2 {2
5
[( ϕ

sinϕ
)2 − (sinϕ

ϕ
)4] − 1

10
[(sinϕ

ϕ
)2

− ( ϕ

sinϕ
)4]}, [12]

V = πR3
0

6
1 − cosϕ
sinϕ

[3 + (1 − cosϕ
sinϕ

)2], [13]

where the variable ϕ in the parametric equations above is de-
fined in SI Appendix, Supplementary Note 4. Fig. 4C shows that
the membrane solution above agrees very well with the FEA
results without any parameter fitting, except for very small vol-
ume where the bending solution in Eq. 10 is more accurate.
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4) Marlow membrane solution (i.e., stretching-dominated de-
formation): The Marlow hyperelastic model can fit any uni-
axial stress–strain curve (SI Appendix, Fig. S2) to the desired
accuracy (41), including that of the SBS (Polystyrene-Block-
Polybutadiene-Block-Polystyrene-SBS) flexible membrane
used in implantable microsystems due to its soft modulus,
and water/oxygen/hydrogen permeability properties (15,
16). For the Marlow hyperelastic model, the volume is still
given by Eq. 13, but the pressure becomes (SI Appendix, Sup-
plementary Note 4)

f (V ) = 2h
R0

sin3 ϕ

ϕ2 σ11(ϕ), [14]

where the function σ11 is a principal stress, and it depends on the
uniaxial stress–strain curve of the polymer (see SI Appendix, Sup-
plementary Note 4 for details). Fig. 4D shows that, for SBS, the
membrane solution in Eqs. 13 and 14 agrees reasonably well with
the FEA results.
The analytic formula of f (V ) given above, combined with Eq. 7

or Eq. 9 for drug delivery time (Eq. 8 for the upper bound of
maximum flowrate), is very useful to estimate the drug delivery
time and the maximum flowrate analytically [i.e., it requires
neither FEA for f (V ) nor numerical solution of ODE. Fig. 4E
shows the analytical results of the nondimensional volume de-
livery over nondimensional time for SBS used in experiments
(15, 16) and in Fig. 4D. The bending solution in Eq. 10 and the
parametric membrane solution in Eqs. 12 and 13 are used as
input for f (V ) in the analytical model in Eq. 7, and they agree
very well with the full numerical results (FEA + ODE) for small

and large volumes, respectively. This provides a simple but ac-
curate way to estimate the drug delivery time. Similarly, Fig. 4F
shows that the flowrate over time from the membrane solution
based on the Marlow model agrees reasonably well with the full
numerical results; therefore, its analytic expression can be used
to estimate the flowrate in drug delivery. The analytical model
[with the analytic expression of f (V ) without FEA] shows very
good agreement with the upper-bound solution for the maximum
flowrate for small Mp (SI Appendix, Fig. S4A) and is clearly be-
tween the lower- and upper-bound estimate for the critical de-
livery time (SI Appendix, Fig. S4B). It is important to note that
the agreement between the numerical and membrane solution is
dependent on the microfluidic resistance Mp, and this agreement
becomes worse for large Mp.

Conclusions. In summary, this work presents an analytical model
to accurately describe the drug delivery process, with a focus on
electrochemical microsystems with flexible membranes. Analyt-
ical modeling, performed in a manner that includes the effects of
microfluidic and flexible membrane resistance ignored in previ-
ous models, quantitatively reproduces the numerical results and
experimental measurements. The results show that the simple
analytical model can be used to determine the drug delivery time
and maximum flowrate in large and small microsystems. These
conclusions and the detailed analysis are important for the
emerging applications of microsystems, with electrochemical
actuation, in drug delivery studies.

Materials and Methods
FEA of Flexible Membrane Deformation. ABAQUS, a commercial FEA software,
was used to model the flexible membrane deformation and calculate the

A

B

Fig. 3. Drug delivery experiments and modeling. (A) Maximum flowrate as a function of effective current for the upper-bound solution (wine dashed line),
numerical (wine circles), and experimental data in Zhang et al. (15) (blue stars) for a system with microchannel cross-section 30 μm × 30 μm. (B) Flowrate as a
function of time models for the upper-bound solution (orange dashed line), numerical (orange circles), semianalytical model (orange continuous line), and
experimental data in Zhang et al. (16) (blue stars) for a system with microchannel cross-section 60 μm × 60 μm.
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function f(V). The circular flexible membrane, fixed at the circumference, is
subjected to a pressure P at the bottom surface that deforms the membrane
into a spherical cap shaped determined by the stiff drug reservoir shown in
Fig. 1. The contact between the flexible membrane and the drug reservoir is
considered in the simulation. The flexible membrane SBS and drug reservoir
(Cyclic Olefin Polymer, COP) were modeled by hexahedron elements
(C3D8R). The number of elements in the model was ∼1 × 105, and the
minimal element size was 1/6 of the thickness of the flexible membrane (150
μm). Mesh convergence of the simulation was ensured for all cases. For the
linear elastic model, the membrane elastic modulus E( ) and Poisson’s ratio v( )
are ESBS = 13 MPa and νSBS =0.49 for copper; in the Mooney Rivlin hypere-
lastic model the membrane coefficients are C10 = 1.744 MPa, C01 = 0.4362
MPa, and D1 = 0.00923 MPa−1; in the Marlow hyperelastic model uniaxial
test data (SI Appendix, Fig. S2) were the input source to define the nominal

stress–strain curve of the SBS flexible membrane. In all cases, the elastic
modulus E( ) and Poisson’s ratio (v) of COP are ECOP = 2.5 GPa and v COP =0.37.

Numerical Model for Drug Delivery.MATLAB numerical solver ode45was used

to solve Eq. 3 with the initial conditions V(t = 0) = 0, and _V(t = 0) = 0. The
maximum time step was set as 1/1,000th of the total time. The f(V) was
obtained from FEA. All the parameters used in the numerical model are
provided in SI Appendix, Table S2.

Data Availability.All study data are included in the article and/or SI Appendix.
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